Web-Service | Impressum | Sitemap | Kontakt | Deutsch  Englisch  Fransösisch  Spanisch   |

Left: The Nesjavellir Geothermal Power Plant in ÃŽingvellir, Iceland (Foto: Gretar Ãvarsson, 2006; via wikimedia)
Right: Well-log based prediction of rock thermal conductivity (Fuchs & Förster, 2013)

 <  Alle Publikationen anzeigen  |


Improving the temperature predictions of subsurface thermal models by using high-quality input data. Part 1: Uncertainty analysis of the thermal-conductivity parameterization

Author: Fuchs, S.; Balling, N. (2016)

Journal: Geothermics - Band 64, Heft , Seiten 1-14

ISSN: 0375-6505

DOI: 10.1016/j.geothermics.2016.04.004

Fragen an den Autor... |

Externer Download (PDF) | Fernleihe beauftragen | Email | 

Recherchieren Sie, welche Bibliotheken die "Geothermics" in Ihrem Bestand haben. Öffnen Sie hierzu die Zeitschriftendatenbank (ZDB) der Deutschen Nationalbibliothek. Aufgeführt sind alle der ISSN 0375-6505 zugeordneten Datenbankeinträge. Unter dieser ISSN sind die Einträge der "Geothermics" abgespeichert.
Wählen Sie eines der angezeigten Ergebnisse aus. Auf der nächsten Seite sehen Sie alle bei der Deutschen Nationalbibliothek erfassten Bibliotheken.

We present a 3D numerical crustal temperature model and analyse the present-day conductive thermal field of the Danish-German border region. The model region covers the northernmost part of the North German Basin, a transition zone between the deep-reaching sedimentary rocks of the Glckstadt Graben (including complex salt structures) and the shallow crystalline basement of the Ringkbing-Fyn High. The modelling approach is novel as it implements for the first time a comprehensive analysis of well-log data on a regional modelling scale. Those logs were used both to derive the spatial distribution of rock thermal conductivity across the study area, and to calculate heat flow values. New values of terrestrial surface heat flow are reported for eight deep boreholes in the North German Basin ranging from 72 to 84 mW/m2 with a mean of 80 5 mW/m2. The values are computed from continuous temperature logs, carefully corrected BHT values, drill-stem tests and well-log derived rock thermal properties (thermal conductivity, radiogenic heat production) and were included in the setup of the numerical lower boundary conditions. New surface heat flow is up to 20 mW/m2 higher than low values reported in some previous studies for this region. Heat flow from the mantle is 3340 mW/m2. The model temperature predictions are validated against 59 temperature observations from 24 wells. The prediction uncertainties between observed and modelled temperatures at deep borehole sites are small (rms = 3.5 C, ame = 2.1 C). Pronounced lateral temperature variations are predicted and found to be caused mainly by complex geological structures, including a large amount of salt structures and marked lateral variations in the thickness of basin sediments. The associated variations in rock thermal conductivity generate significant variations in model heat flow and large variations in temperature gradients. With regard to the utilization of geothermal energy, the Rhaetian and the Middle Buntsandstein sandstone reservoirs are found with temperatures within the range of 4080 C, suitable for low enthalpy heating purposes, in most of the area and locally also with higher temperatures. Temperatures above 120 C, of interest for the production of electricity, are observed only in the very southeastern part of the study area.